Продажа
профессиональных
антикоррозийных
красок
Объекты применения

ВЗАИМОДЕЙСТВИЕ ЛАКОКРАСОЧНЫХ МАТЕРИАЛОВ С ПОВЕРХНОСТЬЮ МЕТАЛЛА

Защитные свойства лакокрасочных покрытий зависят в первую очередь от характера взаимодействия лакокрасочного материала с подложкой, т.е. от типа и интенсивности возникающих между ними связей. Непременное условие формирования покрытия – смачивание поверхности подложки лакокрасочным материалом.

Для обеспечения взаимодействия разнородных материалов, в частности краски и металла, между ними необходим контакт. Поскольку действие сил, обеспечивающих физические и химические связи металла с полимером, проявляются на расстоянии не более 0,5 нм (это приблизительно равно диаметру молекулы воды), то контакт может произойти, если зазор между пленкой жидкой краски и металлом будет не более 0,5 нм. Связи, возникающие между краской и металлом, называются адгезионными связями.

Адгезия – это явление, заключающееся в установлении связи между пленкой краски и подложкой, на которую она нанесена. При этом возникают различные по природе связи: химические с энергией от 50 до 1000 кДж/моль, водородные, электростатические, молекулярные (силы Ван-дер-Ваальса) с энергией до 50 кДж/моль, а также связи, вызванные механическим зацеплением краски в неровностях окрашиваемой поверхности.

Количественно об адгезии обычно судят по величине адгезионной прочности А, которая по сути представляет собой работу, затраченную на разрушение адгезионных связей. Адгезионную прочность условно можно представить как произведение средней единичной адгезионной связи E на число связей n, приходящихся на единицу площади контакта:

A = n · E

Наиболее высокой адгезионной прочностью обладают покрытия из моно- и олигомерных пленкообразователей, превращаемых в полимерное состояние непосредственно на подложке.

В адгезионном взаимодействии существенна также и роль подложки. По адгезионной активности различные металлы ведут себя по-разному. Как правило, адгезионная прочность уменьшается в ряду:

медь > углеродистая сталь > легированная

сталь > алюминий  > цинк > олово > свинец.

Адгезия зависит от условий формирования покрытия. Повышение температуры улучшает адгезионное взаимодействие, если, конечно, это не сопровождается деструкцией лакокрасочного материала. Лучшей адгезии способствуют ультразвуковое и радиационное воздействия.

На полноту контакта краски и подложки, на качество их взаимодействия влияют  следующие основные свойства окрашиваемой поверхности.

Чистота поверхности. Поверхность практически всех твердых тел содержит различные загрязнения.

Типичными загрязнениями металлов являются оксиды в виде прокатной окалины и ржавчины. Наибольшую опасность с точки зрения коррозии вызывает окалина, представляющая собой смесь оксидных соединений железа: вьюстита FeO, магнетита Fe3O4  и гематита Fe2O3. Окалина имеет более положительный электродный потенциал в водных растворах по сравнению с потенциалом железа, поэтому в воде, во влажной атмосфере, в растворах солей при наличии окалины наблюдается интенсивная коррозия стали на участках с разрушенной окалиной. Окалина довольно прочно сцеплена с металлом, и ее удаление является наиболее трудоемкой частью очистных работ.

Ржавчина – гадратированные оксиды железа; ее присутствие приводит к снижению адгезии покрытий и, кроме того, усиливает осмотическое проникновение воды под пленку краски вследствие наличия в ней растворимых продуктов.

Неизбежным загрязнением на металлах является вода. В зависимости от адсорбционной активности металла и влажности воздуха количество воды на поверхности металла может составлять от нескольких монослоев до десятков монослоев. Энергия связи молекул адсорбированной воды с поверхностью металла уменьшается по мере удаления от поверхности. Температурная область десорбции воды составляет для различных металлов от 250 до 430˚C, т.е. в обычных условиях на поверхности металла всегда имеется влага.

Таким образом, при нанесении на металлические поверхности лакокрасочный материал практически всегда (даже после очистки) контактирует не с металлом, а с его кислородными или иными соединениями и адсорбированной водой.

Адсорбированная вода всегда имеется также на поверхности и других материалов – бетона, пластмасс, резины, дерева. Кроме того, в связи со щелочностью поверхность многих строительных материалов загрязнена карбонатами за счет диоксида углерода воздуха.

Загрязнения в виде жиров, консервационных масел и смазок, остатков полировочных паст, охлаждающих эмульсий и т.п. ухудшают условия смачивания поверхности лакокрасочными материалами и, следовательно, ослабляют взаимодействие краски с подложкой, что отрицательно сказывается на адгезии будущего покрытия.

В случае окрашивания полимерных материалов на поверхность иногда вытесняются низкомолекулярные фракции и свободные мономеры. Наличие таких загрязнений, несовместимых с функциональными группами связующего, особенно отрицательно сказывается на адгезии будущего покрытия.

В случае окрашивания полимерных материалов на поверхность иногда вытесняются низкомолекулярные фракции и свободные мономеры. Наличие таких загрязнений, несовместимых с функциональными группами связующего, особенно отрицательно сказывается на адгезионной прочности покрытий.

Даже после тщательного обезжиривания поверхности и удаления продуктов коррозии на ней могут оставаться другие загрязнения, в частности, пыль от разрушения частиц абразива, соли морской воды или атмосферы, остатки прежней краски и т.п. Они должны удаляться с поверхности по возможности более тщательно, т.к. растворимая их часть вызывает осмотическое проникновение воды, а нерастворимые частицы ослабляют контакт краски с поверхностью.

Рельеф поверхности. Рельеф поверхности окрашиваемого объекта связан с исходными дефектами поверхности и условиями обработки.

Дефекты поверхности образуются при изготовлении деталей и конструкций; к ним относятся: заусенцы, вмятины, острые кромки, сварочный град, остатки флюсов, неровности сварных швов и т.п. Дефекты поверхности приводят к разнотолщинности покрытий, возникновению анодных и катодных участков, непрокрашенных участков и, в конечном итоге, преждевременному разрушению покрытия коррозии.

При оценке рельефа с точки зрения подготовки поверхности обращают внимание, главным образом, на шероховатость поверхности. Необходимо добиваться оптимальной шероховатости применительно к  конкретному виду покрытия. Шероховатость поверхности может влиять на свойства будущего покрытия и положительно, и отрицательно. С одной стороны, увеличение шероховатости приводит к увеличению поверхности контакта между краской и подложкой, а отсюда и к увеличению адгезии. Например, соотношение между площадями кажущейся поверхности (определенной по ее геометрическим размерам) и истинной составляет для полированной стали около 1,4, а для стали после абразивоструйной обработки может достигать 10.

С другой стороны, увеличение шероховатости ведет к повышенному (не всегда оправданному) расходу лакокрасочных материалов. При наличии чрезмерной шероховатости подложки ее рельеф может проявляться также в волнистости покрытия, причем тем больше, чем тоньше пленка. Это ведет к повышенному грязеудержанию на покрытии и, отсюда, к снижению его декоративных свойств. Следует учитывать также, что при чрезмерной шероховатости подложки лакокрасочный материал, особенно при повышенной вязкости, может не проникать в глубокие и узкие впадины на окрашиваемой поверхности.

Имеются различные способы получения требуемой шероховатости подложки: выбор способа обработки; выбор материала, размера и формы частиц абразива; изменение энергии удара частиц и др. Шероховатость поверхности после абразивоструйной обработки оценивают по стандарту ИСО 8503.

Поверхность металла содержит беспорядочные неровности с выступами и впадинами, трудно поддающимися описанию. Рекомендуется различать “волнистость” (“рябь”), получаемую при обработке относительно круглыми частицами абразива (например, литой дробью) и “шероховатость” , получаемую при использовании абразива с острыми краями (например, купершлака). В первом случае используют компараторы (эталоны сравнения) S (Shot), во втором – компараторы G (grit). Интервалы визуальных оценок по компараторам характеризуются как  “тонкий”, “средний” и “грубый”.

Для количественной оценки шероховатости используют параметры hу при оценке с помощью микроскопа и Rу при оценке с помощью профилографа.

Природа материала. Сточки зрения характера взаимодействия окрашиваемого материала с краской природу материала можно характеризовать двумя свойствами: сродством материала к воде (т.е. его гидрофильность или гидрофобность) и величиной поверхностной энергии.

Металлы по своей молекулярной структуре гидрофобны, однако, присутствие оксидов и других сорбированных соединений может придать гидрофильность их поверхности. В зависимости от вида применяемого материала требуется соответствующая поверхность: под водные краски – гидрофильная, под краски на гидрофобных пленкообразователях – гидрофобная. Гидрофилизация поверхности достигается обезжириванием, нанесением конверсионных покрытий; гидрофобизация – обработкой различными поверхностно-активными веществами, аппретированием и т.п.

Поверхностная энергия твердых тел, служащих подложкой, во многом определяет такие важные свойства, как смачивание, растекание, адгезия и др. Как правило, жидкости тем лучше смачивают подложку, чем выше ее поверхностная энергия.

Поверхностная энергия, как и степень гидрофильности или гидрофобности, может быть существенно изменена путем модификации, например, обработкой силанами, оксидированием, фосфатированием, азотированием и другими методами.


Рассказать друзьям:  
 
Поставки цинковых покрытий в любые регионы РФ:
Москва, Санкт-Петербург, Астрахань, Нижний Новгород, Воронеж
Создание сайта Unitech
file/image/main_Zn.jpg
1998-2014 “Corrozii.net” 
Российская Федерация, 620062,г.Екатеринбург, пр. Ленина, 101/2
тел.: (343) 268-10-53 

группа в контакте twitter

Антикоррозийная защита и покрытия, цинковые покрытия, холодное цинкование